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SUMMARY

A small, low specific speed (430 RPM*GPM**0.5/ft**0.75) centrifugal pump siage with a 2
inch tip diameter, 0.030 inch tip width shrouded impeller and volute collector, which had
previously been tested in water, was tested with liquid hydrogen as the pumped fluid. Data in
hydrogen obtained at test speeds of 60% and 80% of design speed were scaled to the 77,000
RPM design speed using appropriate affinity laws. The head / flow characteristic in hydrogen
was relatively flat over the test flow range similar to the characteristic determined in the
previous water tests. Based on scaled data from the 80% test speed, the pump overall
isentropic head rise was 7,000 feet at design flow. Efficiency was 30.3% based on output
power delivered from a calibrated drive turbine. Impeller wear ring radial clearances for the
hydrogen tests were over twice the design value of 0.002 inch and significantly affected the
test efficiency. Results of loss analyses using as-tested clearances indicated that an efficiency
of 43.7% could be expected when operating at design ciearance. Limited cavitation data
indicated that the pump had better suction performarice in hydrogen than in water at
corresponding flow ration conditions.
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INTRODUCTION

Pump-fed low-thrust chemical propulsion systems are being considered for transferring
acceleration-limited structures from fow earth orbit to geosynchronous or other high earth
orbits. Engine systems for these applications will require small, relatively low flow rate,
high head rise pumps that fall outside the design range of existing rocket engine turbopumps.
In order to establish a technology base for future design of these systems, a program was
initiated to experimentally evaluate low specific speed centrifugal pump stages and inlet-type
stages over the flow rate range of interest. Funding for the program was provided under NASA-
Lewis Research Center Contract NAS3-23164 and related effort was provided by Rocketdyne
internail sources.

Contracted effort consisted of design, fabrication and water test of six single-stage centrifugal
pump configurations with subsequent test of one of the configurations in liquid hydrogen. The
tester and drive turbine used in the test effort were fabricated and test-calibrated as part of a
prior Rocketdyne-funded program. Also, an inducer was designed and fabricated under contract
and a shear force pump stage was designed and fabricated under the prior company-funded
program. Because of a reduction in program scope, neither of these units was tested. The
reduction in scope likewise precluded tests in liquid hydrogen of a second of the centrifugal
pump stages.

Results of the water testing along with design details of the six centrifugal configurations are
given in reference 1. This report presents liquid hydrogen test results of Configuration 2, a
430 (RPM*GPM** 5/ft**.75) design specific speed stage with a 100% admission shrouded
impeller discharging directly into a volute.

CONFIGURATION SELECTION & DESCRIPTION

A complete description of the six centrifugal pump configurations along with their
performance characteristics in water are given in reference 1. A design summary of the
configurations is given in Table I. Following the water tests, the performance and design
advantages of the six configurations were evaluated by NASA Lewis Research Center and
Rocketdyne with Configuration 2 chosen as the first of two configurations to be tested in liquid
hydrogen Configuration 6 which included a shrouded impelicr with a 0.052 inch tip width (for
ease of fabrication) and a 50% emission vaned diffuser was selected as the second configuration
but was not tested because of the previously noted reduction in program scope.

Design details for Configuration 2 are given in Table 1. Pump hardware is shown in Figure 1.
The pump incorporates a 100% admission full shrouded 2-inch tip diameter impeller with
seven backwardly curved blades which have a 33 degree discharge blade angle. Impeller
discharge tip width is 0.030 inch. Impeller tiow discharges directly into a volute with a
diffusion section at the exit.
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Table | - Design Summary of Centrifugal Pump Configurations

s impelier Tip Specific Speed,
5 Diffuser Speed.| Flow Heod RPM
3 Dischargd width, Fluld Y ’ .
2 Type Diameter| inches Type RPM | GPM | Feet rpmgpm 2-5
8 inches m 075
1 Shrouded 2.00 0.030 Vaned Water 24,500 5.0 637 430
100% Admission 100% Emission | Hydrogen | 77.000 157 6.30C 430
2 Same as 2.00 0.030 Volute Exit Water 24,500 50 637 430
Configuration 1 Hydrogen | 77,000 15.7 6.30C 430
3 Same as 2.00 0.030 Vaned Water 39.200 20 1.63C 215
Configuration 1 25% Emission | Hydrogen | 125,00C 6.3¢ | 16,600 215
4 Open Face 2.00 0.035 Volute Exit Water 24,500 5.0 837 430
100% Admission Hydrogen | 77,000 157 6.30C 430
5 Open Face 2.00 0.035 Volute Exit Water 39.20C 2.0 1.711 215
25% Admission Hydrogen | 125,00C 6.7¢ | 17.400 215
6 Shrouded 2.00 0.052 Vaned Water 24500 50 637 430
100% Admission 50% Emission | Hydrogen | 77,000 | 15.7 6.30C 430




Table Il - Pump Design Geometry
Contiguration NO. 2

Ilmpeller

Type

Discharge diameter, inches
Inlet Eye diameter, inches
Inlet Hub diameter, inches
Discharge tip width, inches
Number of Blades

Discharge Blade angle, degrees

Wear Ring diameter, inches

Front Wear Ring Radial clearance

Inches (maximum design)

Impeller Face clearance, inches
Rear Wear Ring radial clearance

Inches (maximum design)

Inlet Eye Blade angle, degrees

Inlet tlow coefficient (10% blockage)

Percent admission
Discharge Flow coefficient

Diffuser
Iniet diameter, inches
Discharge diameter inches
Passage width, inches
Number of passages
Inlet angle, degrees
Area ratio, out/in
Percent emission

Volute

Maximum area at 360 degrees, in.

Continuity area/Actual area

Conical Diffuser Exit area, in.2

2
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hrouded
2.0
0.75
0.50
0.030

33
1.00
0.002

0.002

21.9
0.134
100
0.074

0.0267
0.60

0.096
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Impeller Volute Pump

Figure 1- Shrouded
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TESY FACILITY DESCRIPTION

Testing was conducted at the Lima Test Stand of the Advanced Propulsion Test Facility (APTF) at
the Santa Susana Field Laboratory of Rocketdyne. Lima Stand has liquid oxygen (LOX), liquid
hydrogen (LH2), liquid nitrogen (LN2), gaseous hydrogen (GH2). helium and nitrogen fiow
capability. Only gaseous and liquid hydrogen were used for this test series. Liquid hydrogen
was used as the pumped fluid and to cool the bearings. and gaseous hydrogen was used to drive
the turbine. A schematic of the test facility showing the test article is shown in Figure 2.
Gaseous hydrogen for turbine drive is supplied from a 5,000 psig, 602 #t3 bottle supply. The
gas flows through the run line to a servo controlled valve for control of GHp turbine inlet
pressure independent of bottle supply pressure. The gas then passes through a 10 micron
filter and precision critical flow nozzte for GH2 flow rate measurement. Ports are also
provided for pressure and temperature measurements.

Liquid hydrogen is supplied to the tester for bearing coolant and at the pump inlet from a
15,000 gallon tank rated at 100 psig. Due to the long lengths of small diameter inlet and
discharge lines, it was anticipated that chilling the flow systems and providing liquid hydrogen
of proper condition to the pump inlet would be difficult. Consequently, the facility lines were
reworked to utilize insulated jacketed lines with hydrogen of proper condition to the pump
inlet would be difficult. Conseguently, the facility lines were reworked to utilize insulated
jacketed lines with hydrogen flowing in the jacket as well as the line itself. During the
rework, instrumentation was added to determine the quality of the hydrogen entering the pump.
The pump flow supply system includes a shut-off valve, flow venturi system, a 10 micron-
filter, and the pump inlet throttle valve. The pump discharge iine contains a flow venturi
system and the throttle valve. The bearing supply line includes an orifice and necessary
instrumentation to measure bearing flow rate and temperature. Pump discharge flow and
bearing overboard drainage are dumped into a burn stack. A picture of the completed test stand
with the pump/turbine tester installed is presented in Figure 3.

Test data were collected on a 128 channel, computer based system capable of taking 50,000
measurements per second. The system consists of a NEFF series 620 data acquisition sub-
system and a Data General Eclipse S140 computer. The computer has 256 kilobytes of
memory, 256 megabytes of storage on a fixed disc, and 126 megabytes of storage on a
removable disc. Associated with the computer are three video terminals. Two terminals are
for displaying facility and test data for the operations personnel. The third terminal is the
operator's terminal.

Data were recorded on magnetic tape during a test. Scaled data were available post-test
imprinted from a 600 line-per-minute printer. The tape format is compatible with
Rocketdyne’s link to Rockwell's Western Computer Center, so that more extensive data
reduction was provided on a 24-hour turnaround basis.

Three, six-channel Watanabe strip chart recorders were used to monitor key parameters as
backup and to assist the test engineer in determining trends and/or necessary adjustments in
the test plan.
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Figure 2 - LH2 Test Facility Schematic
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TEST PROGRAM
TEST ARTICLE

The low thrust pump/iurbine tester is essentially a small turbopump with self contained
turbine drive and centrifugal pumping element. For hydrogen testing, the tester turbine was
driven by gaseous hydrogen supplied at ambient temperature and exhausting to a burn stack.
The pumped fluid was fiquid hydrogen. A cross sectional view of the pump/turbine tester and
photograph of the assembled unit are shown in Figure 4 and Figure 5 respectively. The
assembled unit was the same configuration as for the previously reported water testing except
that the carbon face seal between the pump and tester was replaced with a labyrinth seal, and
the impeller smooth surface wear ring seals were reworked to labyrinth configurations by
machining labyrinth grooves in the housings. Also, the conventional oil lubricated bearings
used in the water tests were replaced with bearings suitable for use in liquid hydrogen.

INSTRUMENTATION

Typical pump and tester instrumentation is shown in Figure 6 and 7. Overall (flange to
flange) head rise was determined by measuring the ditference in pressure between a four-hole
static pressure piezometer ring located 5 diameters upstream of the pump inlet and a four-
hole static pressure piezometer ring located 10 diameters downstream of the pump discharge.
The velocity heads calculated from the pump flow rate and respective cross-sectional areas at
the measurement stations were added to the inlet and discharge static heads to obtain the total
head rise. Static pressure measurements within the pump at the tap locations noted on Figure
6 were used to calculate pump impeller radial and axial loads. Pump inlet flow rate and pump
discharge flow rate were measured by means of venturi tubes. Speed was measured using eddy
current proximity probes that sensed the rotation of a 0.004 inch depression machined on the
tester shaft. Housing mounted acceleromaters which measured pump-end radial, turbine-end
radial and axial vibrations were monitored during testing to ensure safe operation.

Instrumentation is listed in Table lil. Instrumentation accuracies are given in Table IV. All
instrumentation was calibrated by standards traceable to the Bureau of Standards prior to
testing. Calibrations were checked pretest and post-test.

TEST PROCEDURES

The tests evaluated head rise versus flow at shaft speeds of approximately 46000 and 62000
RPM. The flow rate was controlled by a throttle valve located downstream of the pump. Pump
speed was controlled by varying the turbine inlet pressure to control the power input to the
pump. Flow rate was varied from approximately 60 to 120% of design flow.

Suction performance tests were conducted by gradually lowering pump inlet pressure from
approximately 80 psig to a low value which caused in excess of 5% pump head loss. Each
cavitation test was cut automatically when pump head dropped more than 10%.

Input power to the pump was determined by computing the output power generated by the drive
turbine (which had been calibrated as part of the water test series) and subtracting the tester
bearing and seal drag loss. Turbine pressure and temperature measurement locations during
the pump tests were the same as those for the calibration tests to provide a direct relationship
of calibration information. Test drag was experimentally determined by removing the
centrifugal pump and running the tester rotating assembly with liquid hydrogen as the bearing
coolant and the calibrated turbine as the power source.
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Figure 4 - Pump / Tester Cross Section
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Figure 5§ - Pump / Tester Assembly
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Figure 6 - Typical Pump Instrumentation
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Figure 7 - Tester and Turbine Instrumentation
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Table Il - LH2 Centrifugal Pump Test Instrumentation LIST

Parameter Range Bedline Low  High
Pump Inlet Temperature 0to 100 R 44 R X
Pump Outer Temperature 0to 200 R
Bearing Coolant Inlet Temperature 0to 100 R 47 R X
Pump Bearing Coolant Drain Temperature 0to 200 R 100 R
Turbine Bearing Coolant Drain Temperature 0 to 200 R 100 R X
Turbine Inlet Temperature 450 to 550 R
Turbine Outlet Torus Temperature 400 to 550 R
Pump Inlet Pressure 0 to 100 psig 60 psia X (H-Q Tests only)
Pump Discharge Pressure 0 to 500 psig
Volute Discharge Pressure - 0 Degrees 0 to 500 psig
Volute Discharge Pressure - S0 Degrees 0 to 500 psig
Volute Discharge Pressure - 180 Degrees 0 to 500 psig
Volute Discharge Pressure - 270 Degrees 0 to 500 psig
Front Wear Ring Upstream Pressure 0 to 500 psig
Rear Wear Ring Upstream Pressure 0 to 500 psig
Rear Wear Ring Downstream Pressure 0 to 250 psig
Impeller Front Tip Pressure 0 to 500 psig
Impeller Front Mid Pressure 0 to 500 psig
Impeller Rear Tip Pressure 0 to 500 psig
Turbine Nozzle in Pressure 0 to 50 psia 25 psia
Turbine Nozzle Out Tip Pressure 0 to 100 psig
Turbine Nozzle Out Hub Pressure 0 to 10C psig
Rotor Out Tip Pressure 0 to 100 psig
Rotor Out Hub Pressure 0 to 100 psig
Turbine Nozzle Out Cavity Pressure 0 to 100 psig
Rotor Out Cavity Pressure 0 to 100 psig
Turbine Out Torus Pressure 0 to 50 psia
Bearing Coolant Inlet Pressure 0 to 100 psig 60 psig X X
Bearing Coolant Inlet Orifice Pressure 0 to 100 psig
Pump Inlet Valve Inlet Temperature 0to 100 R
Pump Iniet Venturi Temperature 0to 100 R
Pump Inlet Venturi Pressure 0 to 100 psig
Pump Inlet Valve Inlet Pressure 0 to 100 psig
Shaft Speed, Rpm (2 Bently's) 0 to 85,000 Varies pertest X
Bearing Coolant Inlet Orifice Delta-p 0 to 20 psid
Pump Radial Acceleration, Vibration 0 to 50 G, Rms 20 GRms X
Turbine Radial Acceleration, Vibration 0to 50 G,Rms 20 G Rms X
Axial Acceleration, Vibration 0to 50 G, Rms
Time-irig, Seconds
Pump Discharge Flow Venturi Delta-p 0 to 20 psid
Pump Inlet-discharge Depta-p 0 to 250 psid
Pump Inlet Flow Ventura Delta-p 0 to 20 psid
Turbine Flow Nozzle in Temperature 450 to 550 R
Turbine Flow Nozzle in Pressure 0 to 1000 psig
Turbine Flow Nozzle Out Pressure 0 to 100 psig
Bently (3) Vibration 0 to .015 inch, P-P .010 inch, P-P X

*Barometric Pressure Recorded for Test Period

14
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Table IV - Instrumentation Accuracies
Pump Inlet Pressure +0.5 PS!
Pump Inlet and Discharge Temperature +0.2 Degree R

Pump Discharge Pressure and ALL OTHER  +2.5 PSI
Internal Pressures Shown in FIG. 6

Fiow Rate +0.5%
Shaft Speed +0.5%

TEST MATRIX

Liquid hydrogen tests were performed at two speeds and four flow rates per speed at non-
cavitating conditions. Cavitation data were obtained at three flows for one speed. The tests are
listed in Tabie V.

Table V - Test Matrix
Test Number Jesting Details

016024 H-Q testing at 60%
Design speed (46200 RPM)
Flow range .7 to 1.6 Q/QD

016026 H-Q testing at 80%
Design speed (61600 RPM)
Flow range .7 to 1.4 Q/QD

Cavitation test at 80%
Design sped (61600 RPM)
Flow of .65 Q/QD

016027 H-Q testing at 80%
Design speed (61600 RPM)
At design flow

Cavitation test at 80%
Design speed (61600 RPM)

15
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TEST RESULTS

Liquid hydrogen testing of Test Configuration #2 consisted of non-cavitating and cavitating
performance tests over a range of rotational speeds and hydrogen flow rates. The pump design
speed and flow rate are 77,000 RPM and 15.7 GPM, respectively. A rotordynamic vibration
was encountered during testing between 70,000 and 75,000 RPM. The planned test speed of
77,000 RPM was reduced to avoid potential component damage. Review of the test data
confirmed the presence of a critical speed at about 74,000 RPM. The predicted value of the
first critical was 96,000 RPM. The difference was probably due to the larger than desired
dead band found in one bearing assembly. Successful non-cavitating tests were run at 60
percent design speed, and a series of cavitating and non-cavitating tests were conducted at 80
percent design speed.

HEAD-FLOW

The head produced by the pump is determined from measurements between a point upstream of
the pump inlet and a point downstream of the volute discharge. The thermodynamic states
upstream and downstream of the pump are known from measured pressures and temperatures.
The discharge state reflects an increase in energy over the iniet state due to pumping of the
fluid and also due to pump losses resulting in internal fluid heating. The isentropic process
line 1-3 of Figure 8 is used to determine the ideal pump head. The process 1-2 is the actual
process including losses.

The isentropic head for the two test speeds in hydrogen is plotted in Figure 9 with all data
scaled to a speed of 77,000 RPM. Two data sets were derived from test 016-024 (test shaft
speed of 46200 RPM). The first set, represented by solid squares in Figure 9, was obtained
while operating at a fixed steady state flow. The second set, represented by circles, was
obtained while the flow rate was in a slow transient from 1.3 to 0.7 times design flow. It is
observed that both sets align well with each other. This agreement is not always true for
transient data because of lag in sensing ports and/or data acquisition equipment.

The measured head in hydrogen is relatively flat over the test flow range similar to the
head/flow characteristic from the water test results given in reference 1 and shown here in
Figure 10. As discussed in reference 1, leakage flow which is recirculated through the
impeller strongly influenced the shape of the curve. The leakage includes rear wear ring flow
which is returned to the inlet through passages in the test article and front wear ring flow
which mixes with the inlet flow after passing through the wear ring. The front wear ring fiow
has a large tangentia! velocity component prior to mixing with the incoming flow. This
produces prewhirl at the impeller inlet which drops the change of angular momentum produced
by the impeiler and therefore reduces pump head rise. As the delivered pump flow is reduced,
the ratio of impeller total flow to whirling front wear ring fiow is decreased. This acts to
reduce pump head rise at reduced delivered flow while the increased tangential velocity at the
impeller blade exit acts to increase the pump head rise. The result is a nearly constant head
rise as delivered flow is reduced.

The scaled head rise data in Figure 9 also indicate that the isentropic head coefficient of the
pump decreased as test speed was increased. This is typical of hydrogen pump operation in that
at higher speeds (pressures) the head rise does not follow similarity relations because of
hydrogen compressibility and thermodynamic property effects.

16
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Figure 8 - Isentropic Head Flow

2 S~ CONSTANT PRESSURE
3 LINES
ENTHALPY
1
ENTROPY
Where: 1 - Inlet State
2 - Actual Discharge State
3 - ldeal Discharge State

The calculated pump head is:
AH - (h3 - h1) 788.2

Where: AH - Head (feet)
h - Enthalpy (btu/ibm)
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Figure 9 - Low Thrust Hydrogen Test, Configuration 2
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Figure 10 - LOW-Thrust Water Testing
Configuration 2,
Test and Curve Speed - 24,500 RPM
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PUMP EFFICIENCY

Enthalpy Bagis The pump isentropic efficiency can be determined from the ratio of
enthalpy gain in the ideal process to the actual process when no overboard flow losses exist.

h = h3:-hy
h2-h1

In the configuration which was tested, an efficiency correction is required to account for the
heated fluid being lost through the shaft labyrinth seal into the bearing cavity (See Figure 4).
This amount of overboard flow is the difference between the pump inlet and discharge flows
which were measured during the tests. The overboard flow is primarily a function of the
pressure difference between the rear wear ring downstream cavity and the bearing cavity.
Wear ring pressure is measured during testing.

The bearing cavity pressure was nearly constant throughout the test. The bearing cavity
pressure can be determined from cavitation test data. During cavitation testing, pump
pressure is decreased to the point where there is no overboard flow, as shown in Figure 11.
The bearing cavity pressure is 76 psig compared to a bearing supply pressure of 80 psig. Ata
flow rate of 93% of design, the pump efficiency with no overboard flow is two percentage
points lower than the uncorrected efficiency measured during the flow tests. This correction
for overboard flow is applied to the entire flow range tested since the overboard fiow rate did
not vary significantly during H-Q testing.

The corrected values for pump isentropic efficiency are plotted in Figure 12 along with the
water test efficiencies. This figure also includes the corrected efficiency of the pump during
the transient portion of test 016-024. The efficiency plot for the transient test exhibits more
scatter than corresponding head data in the previous discussion. The data scatter is caused by
transducer accuracy during the transients and not oscillations from the pump.

Referring to the previous section (HQ discussion), the head of the pump was almost flat. From
the efficiency plots it is seen that the efficiency is increasing with fiow even above the design
flow. The efficiency increases with flow because the ratio of recirculation to incoming flow
decreases. Since impeller head remains fairly constant, the recirculated flow also is constant.
However, as the incoming flow increases while the recirculating flow remains constant, the
impact on efficiency is less. It is not unusual for a low specific speed pump to have its
efficiency strongly driven by the seal leakage rates.

Jurbine Power Basis Pump efficiencies based on turbine output power have been
corrected to include the losses from the tester drag torque for pump Configuration #2. To
make this correction the tester is considered as three components: the turbine, the tester and
the pump. Turbine calibration was completed as part of the water testing series, and the
resulting turbine performance characteristic is presented in Figure 13. For liquid hydrogen
testing, liquid hydrogen was used to lubricate the bearings. A tester drag calibration test was
conducted with liquid hydrogen supplied to the bearing lube jets, and the resulting tester drag
torque characteristic is plotted in Figure 14.
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Figure 11 - Low Thrust Hydrogen Testing, Configuration 2
Test 016027, Shaft Speed 61,600 RPM

2
.‘ p
-
o ]
° 3
. iqe
1
A
'; i
Y i
al__
8 17-DR WA NG DS
ADVANCED PROPULSION TEST FACILITY Tast 016027 Frame 53

Rear Wear Ring Downstream Cavity Pressure (Psig)

21




RI/RD 87-164

NASA CR-187117

Figure 12 - Low Thrust Hydrogen Test, Configuration 2
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Figure 13 - Low Thrust Turbine Efficiency
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Figure 14 - Low Thrust Tester Torque
Liquid Hydrogen Lubrication

NASA CR-

RI/RD

Shaft Speed, RPM

Y T v T v T —r —

P -
i 1
- r
5 3
- 1
- 1
[ ]
b 4
g ]
[ ]
3 -
P j
[ ]
b -
i ]
! = ]
[ > ]

o

[ x ]
- g 2
[ x 1
| B ]
H -4

L (B 1
5 ] p
i q ]
1 \ 1 . ]

<« [+ o] [{e] <t o

Tester Torque, In-0z

24

o
Q
Q
(@]

[{¢]

0000

<
-

20000 Jocoo 40000

10200

«

187117
87-164




NASA CR-187117
RIVRD 87-164

To correct the pump efficiency for tester drag, a linear curve fit to the tester drag torque was
extrapolated to cover the full range of shaft speeds tested. By subtracting the bearing drag
trom the turbine output power, the pump input power was found. The pump hydraulic output
power was then divided by this input power to determine the pump efficiency.

Efficiencies for Configuration 2 in hydrogen and water based on turbine power output and
bearing and seal drag calibration tests are shown in Figure 15. Also shown are the isentropic
efficiencies from the steady state head-flow tests in hydrogen. The water and hydrogen
efficiencies based on turbine power which are based on ideal-to-actual enthalpy increases, are
shown to be 10 to 13 percentage points above the efficiencies based on turbine power. Since
the hydrogen temperature rise across the pump was only about 3 degrees Rankine, the
isentropic efficiencies have a high uncertainty. For example, a temperature measurement
error of 0.5 degrees would cause the efficiency to vary by approximately seven points. For the
turbine power based efficiencies, the temperature differential across the turbine was about 70
degrees so that a 0.5 degree error would cause an efficiency variation of only one-half
percentage point in derived pump efficiency.

ANALYSIS OF PUMP LOSSES

The work conducted during the water test program included analysis of pump losses in water
for Configuration #2 using the as-tested wear ring radial clearances. Results of that analysis
along with results of similar analysis for the as-tested wear ring radial clearances in
hydrogen are given in Table VI. Note that the losses are given as a percentage of input power
for the respective pumped fluid and are not directly comparable in terms of absolute power
consumption.

Comparison of the water and hydrogen losses shows that friction related loss factors in
hydrogen are lower than those in water. This is due to the much lower viscosity of hydrogen
and higher Reynolds numbers which reduce the friction factor to the extent that the loss factors
are lower even though the hydrogen velocities are significantly higher. The largest loss factor
in either fluid is wear ring leakage which is seen to be inordinately high in hydrogen because of
the large as-tested wear ring clearance. As was the case in the water test program, analysis
was conducted to provide an expected efficiency to reflect pump operation at the 0.002 inch
design value of radial clearance. Results are given in Table VIl along with the previous results
for the water pump. The adjusted design point water test efficiency is 33.5 percent, and the
adjusted hydrogen test efficiency is 43.7 percent.

SUCTION PERFORMANCE

Two successful cavitation tests were performed at 61,600 RPM. The target flow rates for both
tests were near design, however, as the inlet pressure is steadily reduced, the flow rate alsc
decreases. The test flow rates are representative of the fiow conditions at the point of severe
cavitation. Plots of pump inlet tiow rate, shaft speed, isentropic head and overboard flow rate
(to bearing cavity) are shown vs. pump inle¢ NPSH in Figure 16. The overpboard flow rate is
the difference between pump inlet and discharge flow rates. At high inlet pressures the net
overboard flow is from the impeller rear wear ring downstream cavity past a shaft labyrinth
seal to the bearing cavity. As pump pressures are lowered during cavitation testing, the flow
reverses, now flowing from the bearing cavity at approximately 76 psig and below to mix with
the pump wear ring flow.
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Figure 15 - Low Thrust Hydrogen Test
Configuration
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Figure 16 - Low Thrust Hydrogen Testing
Configuration 2
Cavitation Test 016027
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Table VI - Predicted Design Point Losses AS Percent of Input Power at
Operating Wear Ring Clearances
Contfiguration 2

Liquid
rameter Water Hydrogen
Speed, RPM 24,500 77,000
Flow Rate, GPM 5.0 15.7

Wear Ring Radial Clearance, in
Front .0025 .0053
Rear .0020 .00465

Losses as Percent of Input Power
Total Wear Ring Leakage 28.9 51.74
Disk Friction 22.07 9.84
Impeller Internal Friction 4.65 2.73
impeller Diffusion 71 44
Impeller Incidence .62 .34
Impeller Exit Recirculation 0 0
Vaneless Space Friction 77 47
Volute Momentum 1.28 1.00
Volute Friction 3.78 2.37
Volute Diffusion .22 .21
TOTAL 62.99 69.14
Predicted Efficiency, Percent 37.01 30.86
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Table VIl - Design Point Pump Efficiencies
Contiguration 2
Parameter Water Test Hydrogen Test
Speed, RPM 24,500 77,000
Flow Rate, GPM 5.0 15.7
Average Wear Ring
Clearance in .00225 .00498
Test Efficiency Percent 32.5 30.3
Predicted Efficiency
at Test Clearance Percent 37.01 30.86
Test Efficiency Adjusted
TO .002" Radial Wear
Ring Clearance 33.5 43.7

This flow is then routed to the impeller inlet. The pump isentropic head varies during the test
due to shaft speed variations and due to changes in the overboard flow rate. For positive
overboard flows the head follows the shaft speed squared. As the overboard flow reverses, the
head is shown to decrease due to the mixing of the two flows.

Figure 17 is a re-plot of Figure 16, where the abscissa is pump flow over design flow. The
left ordinate (Y-axis) is the head of the pump, and the right ordinate is the overboard flow.
Results from three tests are plotted. The head from test 024 remains constant for all flows,
and the overboard flow is always positive. Tests 026 and 027 have nearly constant head until
the overboard flow becomes negative, that is, bearing cavity fluid mixes with the pump fluid.
The pump efficiency characteristic also dropped off sharply at the corresponding pump flow at
which the overboard flow became negative.

Pump cavitating performance can be characterized by the Suction Specific Speeds (Nss)
parameter which is defined by the following expression:

Nss= N (Q) 112
(NPSH) ¥4
Where N - Shaft Speed (RPM)
Q - Pump Inlet Flow (GPM)

NPSH - Net Positive Suction Head at each data point (FEET)
For the hydrogen testing reported here, the cavitation performance capability of the pump is
defined as the Suction Specific Speed at which the head rise of the pump is 3% less than the
non-cavitating head rise.

Figures 18 and 19 are plots showing the increase in Nss as inlet NPSH was lowered during the
tests. Figure 20 presents Nss as flow varied during the tests. Since inlet fiow rate was
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decreasing as NPSH was lowered, the Nss points reflect flow rates below the design point values
for the test speeds. In test 016026, the 3% head loss point occurred at an Nss of 9620 with
the flow at 65% of design. In test 016027, the 3% head loss point was at an Nss of 8800 with
the flow at 72% of design.

In Figure 21, the two Nss points which were obtained in the hydrogen tests are overlaid on a
plot of Suction Specific Speed versus Flow Ratio from the water tests results given in
Reference 1. Note that the water test results were reported at 5% head loss conditions rather
than the 3% conaitions for thic hydrogen tests. Examination of the water head loss versus NPSH
curves showed relatively steep head drop-off such that the difference in water Nss between 3%
and 5% is small. As shown in the figure, both of the hydrogen Nss points reflect better suction
performance than water Nss at corresponding flow ratio conditions. This is expected because of
thermodynamic suppression head affects in hydrogen. With only two Nss points, an
extrapolation of data to design flow conditions was not possible, especially since the two points
by themselves indicate an erroneous Suction Specific Speed trend as flow ratio is increased
from 0.65 to 0.72 Q/Qd. The reason for the difference in calculated Nss magnitudes is believed
to be due to the inability to obtain the accuracy in the pressure and temperature measurements
necessary to determine NPSH levels.

As discussed above and shown in Figures 16 and 17, the head rise of the pump was decreasing
during the cavitation tests after pump inlet pressure became low enough to allow hydrogen
coolant from the bearing cavity to mix with the inlet flow. Although a quantitative effect of the
flow mixing on cavitation results is unknown, the coolant flow increases the volume flow and
temperature of the hydrogen at the impeller eye, both of which have an adverse effect on
cavitation margin. As such, the reported Suction Specific Speeds are believed to be
conservative.

DIFFUSION SYSTEM PERFORMANCE

A cross sectional view of the diffusion system for Configuration 2 is shown in Figure 22.
Impeller flow discharges directly into a volute with a diffusing section at the voiute exit.
Because of the very small size, the volute flow area (for constant velocity) was made oversize
by the empirical factor given in Table Il. As a result there was recovery of static pressure in
both the volute and the volute exit section as shown in Figure 23 for the test at 80 percent
design speed. Pump overall static head noted on the figure reflects measurements from a
location 20 diameters upstream of the impeller inlet to a location five diameters downstream
of the pump discharge. Impeller static head was measured from the same upstream station to
the impelier tip. The difference between the two indicates the conversion of impelier exit
velocity pressure into static pressure. System performance in hydrogen was similar to water
test results, i.e. good static pressure recovery with essentially no change in performance over
the range of test flow rate.

HYDRODYNAMIC LOADING

The scope of the program experimental effort included a study of pump axial and radial
nydrodynamic loading. Pump internal static pressures were .sed to determine the pressure
distributions on the various pump parts. The pressures acting cver a known area are summed
up to get the corresponding load. This section presents comparisons of the measured loads in
both water and liquid hydrogen.
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Figure 18 - Low Thrust Hydrogen Testing
Configuration 2
Cavitation Test 016026, Shaft Speed 61,600 RPM
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Figure 19 - Low Thrust Hydrogen Testing
Configuration 2
Cavitation Test 016027, Shaft Speed 61,600 RPM
Suction Specific Speed vs Inlet NPSH
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Figure 20 - Low Thrust Hydrogen Testing

Configuration 2
Suction Specific Speed
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Figure 21 - Low Thrust Hydrogen Testing

Configuration 2
Suction Performance FOR Hydrogen and Water
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Figure 22 - Diffusion System, Configuration 2
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Badial Load The radial load acting on the impeller is determined by integrating the
impeller tip static pressure over the circumferential area. The impeller tip pressures were
not measured directly, but measurements were made at four equally spaced locations around
the outer diameter of the volute (Figure 22). The static pressure at the impeller tip was
derived from these four measurements by assuming that the flow from the impeller 0.d. to the
volute 0.d. follows the free vortex relationships.

The static pressure rise to the volute measurement stations were shown in Figure 23. As can
be seen, the pressures are increasing with increasing angle. This is a consistent distribution
for a volute that is larger in area than required for passing the fiow. This distribution will
yield a load acting to push the impelier towards the 90 degree side (a pressure distribution
that is linear with angle would act exactly towards 90 degrees)

With only four measurements, the accuracy of a calculated angle would not be expected to be
very good. The angle calculated was actually between 90 and 180 degrees which is the right
general trend. The scaled magnitude of the radial load in hydrogen is shown in Figure 24 based
on operation at full speed (77,000 RPM). Also shown are the water test results from
reference 1. All three sets of data are seen to be in good agreement when hydrogen results are
scaled to consistent conditions. The data show that the volute size is large enough to pass a
much larger flow than the pump design flow without introducing significant radial load. This is
another reason that small pumps like this should have ar oversized volute.

Axial Load The axial load is determined from the measured static pressure distribution
on the front and rear impeller face and by the impeller inlet pressure. The front face has
three static pressure taps located at the impeller tip, at the wear ring diameter and at a
location mid-way between these two. The rear face has two static pressure taps. These are
located at the tip and at the wear ring diameter. The fluid pressures in the shroud areas are a
func. on of the effective tangential velocity in the region which is typically defined by a factor
K which is the ratio of fluid velocity to wheel speed at any given radius (for the limiting case of
pure forced vortex motion K=1.0).

The shroud K-factors calculated from the measured static pressures are all higher than
expected. The rear shroud K factor averages approximately 0.75 aad the front shroud
approximately 0.73. From experience on similar small scale turbopumps (MK-51 fuel and
oxidizer pumps) the K-factors are characteristically high. A possible explanation is the
relatively large impeller tip shroud thickness which increases the tangential velocity of the
fluid entering the shroud cavity. Also, the boundary layers on the small size impeller would be
larger leading to high tangential velocities, and the wear ring flow is primarily derived from
these boundary layer flows.

The axial load at design speed and flow rate on the front and rear shrouds are 570 Ib and 552
Ib, respectively giving an unbalance of 18 Ib. The pump inlet pressure at 80.3 psig adds to the
shroud imbalance by a 59 Ib load. The remaining loads on the pump and turbine are relatively
small compared to these loads. The turbine, operating at full admission, contributes less than
one Ib axial load. The net axial load of 77 Ib is primarily a function of the pump inlet pressure
(contributing 77% of the total load).
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Figure 23 - Low Thrust Hydrogen Testing

Configuration 2
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Figure 24 - Low Thrust Hydrogen Testing

Configuration 2 Radial Load
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CONCLUDING REMARKS

Testing was successfully completed to evaluate a small, low specific speed centrifugal pump
stage in liquid hydrogen. Test speeds were 60% and 80% of the 77,000 RPM design speed.
The head/flow characteristic in hydrogen was relatively flat over the test flow range similar to
the head/flow characteristic determined in previous water tests. When scaled to design speed,
test results at 80% speed show a head rise of 7,000 feet at design flow. Impeller wear ring
radial clearances for the hydrogen tests were over two times the design value and significantly
affected the test efficiency which was measured at 30.3%. Test efficiency adjusted to reflect a
0.002 inch design clearance is 43.7%. Limited cavitation test data show improved suction
performance in hydrogen over the water test cavitation performance.

In general, the hydrogen tests results show that relatively good performance can be achieved

for small, low specific speed centrifugal pumps with reasonable control of wear ring
clearances.
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